Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin.
نویسندگان
چکیده
Rodents learn to associate the rewarding effects of drugs with the environment in which they are encountered and, subsequently, will display a conditioned place preference (CPP) for that environment. Cocaine-induced CPP is generally thought to be mediated through inhibition of the dopamine transporter and the consequent increase in extracellular dopamine. However, here we report that dopamine-deficient (DD) mice formed a CPP for cocaine that was not blocked by a dopamine D1-receptor antagonist. Fluoxetine, a serotonin transporter (SERT) inhibitor, produced CPP in DD, but not control mice, suggesting that serotonin mediates cocaine CPP in DD mice. Inhibition of dopamine neuron firing by pretreatment with quinpirole, a dopamine D2-receptor agonist, blocked both cocaine- and fluoxetine-induced CPP in DD mice. These findings are consistent with the hypothesis that, in the absence of dopamine, cocaine-mediated SERT blockade activates dopamine neurons, which then release some other neurotransmitter that contributes to cocaine reward in DD mice.
منابع مشابه
Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice.
Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recogn...
متن کاملMolecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference.
Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the ...
متن کاملComparing of the Effects of Hypericin and Synthetic Antidepressants on the Expression of Morphine-Induced Conditioned Place Preference
The effect of hypericin on the expression of morphine-induced conditioned place preference (CPP) was investigated and compared with the effect of the synthetic antidepressants. The CPP paradigms took place over six days using an unbiased procedure. The results demonstrate that intra-peritoneal (IP) injection of morphine sulfate (2.5, 5 and 10 mg/Kg) significantly induce the CPP in rat. Intra-pe...
متن کاملAbolished cocaine reward in mice with a cocaine-insensitive dopamine transporter.
There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mic...
متن کاملComparing of the Effects of Hypericin and Synthetic Antidepressants on the Expression of Morphine-Induced Conditioned Place Preference
The effect of hypericin on the expression of morphine-induced conditioned place preference (CPP) was investigated and compared with the effect of the synthetic antidepressants. The CPP paradigms took place over six days using an unbiased procedure. The results demonstrate that intra-peritoneal (IP) injection of morphine sulfate (2.5, 5 and 10 mg/Kg) significantly induce the CPP in rat. Intra-pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 46 شماره
صفحات -
تاریخ انتشار 2007